MECE 347 Lab2 (Amplifier Frequency Response)

Introduction:

The objective is to obtain the common emitter amplifier frequency response, draw the bode plots.

Procedure:

Implement the following common emitter amplifier. Use a voltage divider in the front to get the small signal. Then, measure the gain (Vout/Vin) for the frequencies in the table.

Frequency (Hz)	Gain (Vout/Vin)	Power
5		
10		
20		
50		
100		
1k		
10k		
20k		
30k		
40k		
50k		
100k		
200k		

From your measurements, find the -3dB frequencies, and draw the bode plot for the amplitude gain only.

Square Wave Technique to determine the frequency response of a circuit:

Now apply a square wave signal of T=10 Hz and amplitude of 4 V to the input of the circuit and observe the output signal on the oscilloscope.

This time obtain the upper and lower cut-off frequencies of the circuit by using the formulas

 $f_H=0.35/t_R$, where t_R is the rise time of the signal,

 $f_L=P.f_S/\pi$, where P=V-V'/V, where P is called the tilt of the signal.

Note these formulas and its proper applications are given in your text book pp. 583-586.

Questions:

- ^{1.} Compare the cut-off frequencies obtained in the two methods for the circuit and comment about the result.
- ^{2.} Why there is arise time and tilt problem when we apply a square wave? Explain this by using Fourier Transforms and frequency domain behavior of the circuit.
- ^{3.} How do you think that phase shift caused by the circuit will change by frequency? Explain.